skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Balázs, Márton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider point-to-point last-passage times to every vertex in a neighbourhood of size $$\delta N^{\nicefrac {2}{3}}$$ δ N 2 3 at distance N from the starting point. The increments of the last-passage times in this neighbourhood are shown to be jointly equal to their stationary versions with high probability that depends only on $$\delta $$ δ . Through this result we show that (1) the $$\text {Airy}_2$$ Airy 2 process is locally close to a Brownian motion in total variation; (2) the tree of point-to-point geodesics from every vertex in a box of side length $$\delta N^{\nicefrac {2}{3}}$$ δ N 2 3 going to a point at distance N agrees inside the box with the tree of semi-infinite geodesics going in the same direction; (3) two point-to-point geodesics started at distance $$N^{\nicefrac {2}{3}}$$ N 2 3 from each other, to a point at distance N , will not coalesce close to either endpoint on the scale N . Our main results rely on probabilistic methods only. 
    more » « less
  2. null (Ed.)
    Abstract This paper gives a self-contained proof of the non-existence of nontrivial bi-infinite geodesics in directed planar last-passage percolation with exponential weights. The techniques used are couplings, coarse graining, and control of geodesics through planarity and estimates derived from increment-stationary versions of the last-passage percolation process. 
    more » « less